
GNU History Library
Brian Fox

Free Software Foundation

Version 1.1

April 1991

This document describes the GNU History library, a programming tool that provides a consistent

user interface for recalling lines of previously typed input.

Published by the Free Software Foundation

675 Massachusetts Avenue,

Cambridge, MA 02139 USA

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions

for verbatim copying, provided that the entire resulting derived work is distributed under the terms

of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,

under the above conditions for modified versions, except that this permission notice may be stated

in a translation approved by the Foundation.

Copyright c© 1989, 1991 Free Software Foundation, Inc.

Chapter 1: Using History Interactively 1

1 Using History Interactively

This chapter describes how to use the GNU History Library interactively, from a user’s stand-

point. It should be considered a user’s guide. For information on using the GNU History Library

in your own programs, see Chapter 2 [Programming with GNU History], page 3.

1.1 History Interaction

The History library provides a history expansion feature that is similar to the history expansion

in Csh. The following text describes the sytax that you use to manipulate the history information.

History expansion takes place in two parts. The first is to determine which line from the

previous history should be used during substitution. The second is to select portions of that line

for inclusion into the current one. The line selected from the previous history is called the event,

and the portions of that line that are acted upon are called words. The line is broken into words

in the same fashion that the Bash shell does, so that several English (or Unix) words surrounded

by quotes are considered as one word.

1.1.1 Event Designators

An event designator is a reference to a command line entry in the history list.

! Start a history subsititution, except when followed by a space, tab, or the end of the

line... = or (.

!! Refer to the previous command. This is a synonym for !-1.

!n Refer to command line n.

!-n Refer to the command line n lines back.

!string Refer to the most recent command starting with string.

!?string[?]

Refer to the most recent command containing string.

1.1.2 Word Designators

A : separates the event specification from the word designator. It can be omitted if the word

2 GNU Readline Library

designator begins with a ^, $, * or %. Words are numbered from the beginning of the line, with the

first word being denoted by a 0 (zero).

0 (zero) The zero’th word. For many applications, this is the command word.

n The n’th word.

^ The first argument. that is, word 1.

$ The last argument.

% The word matched by the most recent ?string? search.

x-y A range of words; -y Abbreviates 0-y .

* All of the words, excepting the zero’th. This is a synonym for 1-$. It is not an error to

use * if there is just one word in the event. The empty string is returned in that case.

1.1.3 Modifiers

After the optional word designator, you can add a sequence of one or more of the following

modifiers, each preceded by a :.

The entire command line typed so far. This means the current command, not the

previous command, so it really isn’t a word designator, and doesn’t belong in this

section.

h Remove a trailing pathname component, leaving only the head.

r Remove a trailing suffix of the form ‘.’suffix, leaving the basename.

e Remove all but the suffix.

t Remove all leading pathname components, leaving the tail.

p Print the new command but do not execute it.

Chapter 2: Programming with GNU History 3

2 Programming with GNU History

This chapter describes how to interface the GNU History Library with programs that you write.

It should be considered a technical guide. For information on the interactive use of GNU History,

see Chapter 1 [Using History Interactively], page 1.

2.1 Introduction to History

Many programs read input from the user a line at a time. The GNU history library is able

to keep track of those lines, associate arbitrary data with each line, and utilize information from

previous lines in making up new ones.

The programmer using the History library has available to him functions for remembering lines

on a history stack, associating arbitrary data with a line, removing lines from the stack, searching

through the stack for a line containing an arbitrary text string, and referencing any line on the

stack directly. In addition, a history expansion function is available which provides for a consistent

user interface across many different programs.

The end-user using programs written with the History library has the benifit of a consistent

user interface, with a set of well-known commands for manipulating the text of previous lines and

using that text in new commands. The basic history manipulation commands are similar to the

history substitution used by Csh.

If the programmer desires, he can use the Readline library, which includes some history manip-

ulation by default, and has the added advantage of Emacs style command line editing.

2.2 History Storage

typedef struct _hist_entry {
char *line;
char *data;

} HIST_ENTRY;

4 GNU Readline Library

2.3 History Functions

This section describes the calling sequence for the various functions present in GNU History.

Functionvoid using history ()

Begin a session in which the history functions might be used. This just initializes the

interactive variables.

Functionvoid add history (char *string)

Place string at the end of the history list. The associated data field (if any) is set to

NULL.

Functionint where history ()

Returns the number which says what history element we are now looking at.

Functionint history set pos (int pos)

Set the position in the history list to pos.

Functionint history search pos (char *string, int direction, int pos)

Search for string in the history list, starting at pos, an absolute index into the list.

direction, if negative, says to search backwards from pos, else forwards. Returns the

absolute index of the history element where string was found, or -1 otherwise.

FunctionHIST ENTRY *remove history ();

Remove history element which from the history. The removed element is returned to

you so you can free the line, data, and containing structure.

Functionvoid stifle history (int max)

Stifle the history list, remembering only max number of entries.

Functionint unstifle history ();

Stop stifling the history. This returns the previous amount the history was stifled by.

The value is positive if the history was stifled, negative if it wasn’t.

Chapter 2: Programming with GNU History 5

Functionint read history (char *filename)

Add the contents of filename to the history list, a line at a time. If filename is NULL,

then read from ‘~/.history’. Returns 0 if successful, or errno if not.

Functionint read history range (char *filename, int from, int to)

Read a range of lines from filename, adding them to the history list. Start reading at

the from’th line and end at the to’th. If from is zero, start at the beginning. If to is

less than from, then read until the end of the file. If filename is NULL, then read from

‘~/.history’. Returns 0 if successful, or errno if not.

Functionint write history (char *filename)

Append the current history to filename. If filename is NULL, then append the history

list to ‘~/.history’. Values returned are as in read_history ().

Functionint append history (int nelements, char *filename)

Append nelement entries to filename. The entries appended are from the end of the

list minus nelements up to the end of the list.

FunctionHIST ENTRY *replace history entry ()

Make the history entry at which have line and data. This returns the old entry so you

can dispose of the data. In the case of an invalid which, a NULL pointer is returned.

FunctionHIST ENTRY *current history ()

Return the history entry at the current position, as determined by history_offset.

If there is no entry there, return a NULL pointer.

FunctionHIST ENTRY *previous history ()

Back up history offset to the previous history entry, and return a pointer to that entry.

If there is no previous entry, return a NULL pointer.

FunctionHIST ENTRY *next history ()

Move history_offset forward to the next history entry, and return the a pointer to

that entry. If there is no next entry, return a NULL pointer.

FunctionHIST ENTRY **history list ()

Return a NULL terminated array of HIST_ENTRY which is the current input history.

Element 0 of this list is the beginning of time. If there is no history, return NULL.

6 GNU Readline Library

Functionint history search (char *string, int direction)

Search the history for string, starting at history_offset. If direction < 0, then the

search is through previous entries, else through subsequent. If string is found, then

current_history () is the history entry, and the value of this function is the offset

in the line of that history entry that the string was found in. Otherwise, nothing is

changed, and a -1 is returned.

Functionint history expand (char *string, char **output)

Expand string, placing the result into output, a pointer to a string. Returns:

0 If no expansions took place (or, if the only change in the text was the

de-slashifying of the history expansion character),

1 if expansions did take place, or

-1 if there was an error in expansion.

If an error ocurred in expansion, then output contains a descriptive error message.

Functionchar *history arg extract (int first, int last, char *string)

Extract a string segment consisting of the first through last arguments present in string.

Arguments are broken up as in the GNU Bash shell.

Functionint history total bytes ();

Return the number of bytes that the primary history entries are using. This just adds

up the lengths of the_history->lines.

2.4 History Variables

This section describes the variables in GNU History that are externally visible.

Variableint history base

For convenience only. You set this when interpreting history commands. It is the

logical offset of the first history element.

Chapter 2: Programming with GNU History 7

2.5 History Programming Example

The following snippet of code demonstrates simple use of the GNU History Library.

main ()
{
char line[1024], *t;
int done = 0;

line[0] = 0;

while (!done)
{
fprintf (stdout, "history%% ");
t = gets (line);

if (!t)
strcpy (line, "quit");

if (line[0])
{
char *expansion;
int result;

using_history ();

result = history_expand (line, &expansion);
strcpy (line, expansion);
free (expansion);
if (result)

fprintf (stderr, "%s\n", line);

if (result < 0)
continue;

add_history (line);
}

if (strcmp (line, "quit") == 0) done = 1;
if (strcmp (line, "save") == 0) write_history (0);
if (strcmp (line, "read") == 0) read_history (0);
if (strcmp (line, "list") == 0)

{
register HIST_ENTRY **the_list = history_list ();
register int i;

if (the_list)
for (i = 0; the_list[i]; i++)
fprintf (stdout, "%d: %s\n",

8 GNU Readline Library

i + history_base, the_list[i]->line);
}

if (strncmp (line, "delete", strlen ("delete")) == 0)
{
int which;
if ((sscanf (line + strlen ("delete"), "%d", &which)) == 1)

{
HIST_ENTRY *entry = remove_history (which);
if (!entry)

fprintf (stderr, "No such entry %d\n", which);
else

{
free (entry->line);
free (entry);

}
}

else
{
fprintf (stderr, "non-numeric arg given to ‘delete’\n");

}
}

}
}

Appendix A: Concept Index 9

Appendix A Concept Index

(Index is empty)

10 GNU Readline Library

Appendix B: Function and Variable Index 11

Appendix B Function and Variable Index

(Index is empty)

12 GNU Readline Library

i

Table of Contents

1 Using History Interactively .1

1.1 History Interaction . 1

1.1.1 Event Designators . 1

1.1.2 Word Designators .1

1.1.3 Modifiers . 2

2 Programming with GNU History .3

2.1 Introduction to History .3

2.2 History Storage . 3

2.3 History Functions .4

2.4 History Variables . 6

2.5 History Programming Example . 7

Appendix A Concept Index .9

Appendix B Function and Variable Index11

ii GNU Readline Library

